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A key ingredient in the design of engineering components and structures under general
thermomechanical loading is the use of mathematical constitutive models (e.g. in finite

element analysis) capable of accurate representation of short and long term stress/defor-

mation responses. In addition to the ever-increasing complexity of recent viscoplastic
models of this type, they often also require a large number of material constants to

describe a host of (anticipated) physical phenomena and complicated deformation mech-

anisms. In turn, the experimental characterization of these material parameters consti-

tutes the major factor in the successful and effective utilization of any given constitutive

model; i.e., the problem of constitutive parameter estimation from experimental mea-
surements.

Traditionally, simple, basically trial-and-error procedures (graphical�mechanistic fitting)

have been used for simple models, but these are certainly rather limited in more general

situations Fig. 4. This is particularly true in dealing with very large number of material
constants that are often lacking in their direct physical interpretation, where complica-

tions due to the vastly different scaling and highly interactive nature of these parameters

in a large test matrix under various controls (stress, strain, or mixed) under transient and

steady-state conditions Fig. 2.

An urgent need and obvious need therefore exists for a systematic development of a

general methodology for constitutive parameter estimation. This provides the main moti-

vation for the present work.

Background and Approach

The problem belongs to the class of inverse problems [1] of mathematical programming

and optimization theories. Its solution requires three major and interrelated parts Fig. 4

in its application to the present dynamic (time-variant) case; i.e., (a) primal analysis

* Work funded under NASA Grant NAG3-1746 (Technical Monitor: Steven Arnold)
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(response functionals) for the differential form of the constitutive model, (b) sensitivity
analysis, and (c) optimization of an error/cost function. The optimization algorithms for
the last part (c) are presently very well developed [2]. This is not the case, however,
regarding work on the other two, intimately related, parts (a) and (b). Mainly due to the
greater mathematical complexity and associated intensive computational demands for
the present dynamic and nonlinear case, compared to other more traditional optimization
problems of linear structures. This renders unsuitable or even inapplicable several of the
available solution methods and algorithms for primal and sensitivity analyses, Fig. 5.

For example, using an explicit integration method, with its known material-dependent
conditional stability limits, becomes very ineffective for primal analysis, in which essen-
tially thousands of =different materials" are being processed for response predictions (in
a typical Optimization cycle), thus making any adaptive time-stepping strategy very com-
plicated, if at all possible. Similarly, in addition to several accuracy and numerical insta-

bility problems, the use of finite-differencing schemes for sensitivity analysis can easily
become computationally prohibitive with the increase in material constants and time win-
clows for fitting with long-duration tests.

The highlights of the mathematical formulations and main features of the present devel-
opment (Figs. 6 and 7) are summarized as follows. Posed as a least-square, con-
strained, nonlinear mathematical optimization [2], we use an objective functional of the
minimum-deviation-error type, i.e., differences in the predicted and measured responses
at varying times. The material constants constitute the design variables, with several
(side) constraints to ensure a physically-meaningful model. For the primal response
analysis part, we utilize an implicit, unconditionally-stable, integration algorithm. Details
and several applications of this scheme are described in a separate presentation in this
proceeding; see also [3]. The sensitivity and analysis is of the direct _ preformed on
the basis of an _, recursive, form associated with the above integrator. Finally, the
optimizer segment is of the gradient-based type, utilizing a sequential-quadratic pro-
gramming scheme [4]. It is these three approaches combined that provide for the robust-
ness and computational efficiency.

The overall strategy is summarized in the flow chart of Fig. 8. Its main driver (dubbed
COMPARE for COnstitutive Model PARamter Estimator) controls the three solution mod-

ules (primal analysis, sensitivity, optimizer), together with the management of data files
and results. From the practical standpoint (Fig. 9), the overall strategy is Sufficiently gen-
eral to handle comprehensive test-matrix data, under arbitrary load-control variables,

multiaxial stress/strain tests, and transient as well as steady-state response measure-
ments.

Results

All applications given utilize a viscoplastic model of the nonlinear kinematic-hardening
type, GVIPS [5], having a total of eight material constants (Fig. 10). The first part of the
studies [Figs. 1 t-15 ] are performed on a simulated ("exact") model material, for valida-
tion and to investigate the issues of parameter sensitivities, accuracy, comparisons, and
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In the second part [Figs. 17-22 ], we use actual test-matrix results for TIMETAL21S

material. This includes three tensile test under different strain rates, creep tests with

three different imposed stresses, a relaxation test, as well as a three-step creep test.

The "fitting" success in this latter, more realistic application, with vastly different condi-

tions and very large number of data points, clearly points to the potential benefit and
practicality of the general methodology.
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F"_I. 1

MOTIVATION

Two major obstacles to fully utilizing recent time-dependent/hereditary con-
stitutive models in practical engineering analysis:

• Lack of efficient and robust integration algorithms

• Difficulties associated with characterizing large number of required
material parameters

- Most material parameters lack obvious/direct physical interDretations

- Even under load histories in simple laboratory tests, several parameters will
intera_ to affect predicted responses

- Further complications due to:

(i) Incompleteness of response measurment in both time and state

(ii) Vastly different _ of constitutive parameters

- Urgent need exists for _ guidelines in the systematic development of
engg_0..e_._lmethodology for constitutive- p_rameter-identific,,ati0n

1_2
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OBJECTIVES

General: Systematic development of general methodology for constitutive

parameter estimation

Specific:

• Mathematical formulation of a basic optimal material parameter estimation
scheme

• Computational algorithms for implementation

• Validation tests and dlzE_.r.maO.g_studies

• Alternatives for further refinements in fitting;
that is, variable/cost function scaling, weights, multicriteria optimization theo-

ries, etc.

F'_.3

BACKGROUND

"Traditional" approaches for constitutive parameter estimations:

- Essentially trial-and-error in nature

- Based on several assumptions about test conditions and material behavior

that are _ satisfied in actual tests

- Difficult to control error proDaoation in sequential evaluations of parameters

- Rather _ in applications

Modern approaches for constiutive parameter estimations based on
mathematical programming and oDtimization theories:

- More _systematically derived

- Three major parts for modular implementations:

(a) Prirn_ analysis for response functionais
(integrated history)

(b) Sensitivity analysis

(c) _ of "cost" function
F_. 4
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BACKGROUND

Methods and algorithmic details differ greatly for the sensitivity analysis:

- Finite difference methods (prohibitively expensive; prone to errors)

- Evolutionary sensitivities approach (expensive two-subproblem
integrations; special coding for number of parameters dependent sizes of
arrays; stiffness/singularity problems)

- _ sensitivity approach (regressive computations with large storage
requirements; or increased computational cost for terminal adjoint
problems)

- Direct-differentiationsensitivity (most effective and accurate when
consistently derived with the underlying _ integration of the model)

Fig. 5

MATHEMATICAL FORMULATION

• Framework required characteristics:

- Cou_oled nonlinear system (internal/external state variables)

- Tr_msient response with different possible steady-state conditions
(time variance)

- Arbitrary (optional) control variables; i.e., stress-, strain-, mixed-types of
loading (general test matrix)

• Approach:

- A least-square, constrained, nonlinear mathematical _ problem

- Material oarameters constitute the design variables, with several associated
side constraints to ensure Physically meanino_full model

- The technique is of the minimum-deviati0n-error type, for the integrated mul-
response (functionals)

1_6
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MATHEMATICAL FORMULATION

Noteworthy aspects:

(i) Robustness and effectiveness:

- Unconditionally stable _ integration for _ analysis (model
problem)

- Direr-differentiation approach for accurate sensitivity analysis

- State-of-the-art optimizer using seauenti_l auadratic _ (with
exact gradient and _ metricJHessian) for least-squares
minimization

(ii) Computational efficiency:

- Non-iterative "exact" sensitivities n(g_q._after primal analysis time-step
convergenqe)

- Effective ._ for both the design variables and the objective function
in optimization

- Enhanced iterations with line searches in implicit integration

F_.z

@
Sequential Quadratic
Programming (SQP)

COMPUTATIONAL ALGORITHM

@@
Direct Differentiation Implicit Integration
Approach For Primal Analysis

- Ident_ active/passive variables
for a test

- Scale design variables and
objective function

- Formulate a single design
optimization problem
- weighted objective function
- constraints
- sensitivities

Results

Fig. 8

Analysis Data:
- Problem Type/Control
- Multiaxial Responses
- Time Window

Estimator Data:
- Number of Tests
- Initial Design Variables
- Upper/Lower Limits
- Active/Passive

Variables
- Variable Grouping
- Weighting Factors

Optimizer Data:
- Convergence

Tolerance
- Iteration Limits
- Stop Criteria
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COMPUTATIONAL ALGORITHMS

Features and capabilities:

- General test matrix with arbitrary_control (stress, strain, or mixed) with

multiaxial measurements (two normal plus one shear component), e.g.,

Stress-control

Mixed-control Relaxation

Stress-control Tension/constant stress rate

Mixed-control Tension/torsion test

- Active/oassive design parameter activation (e.g., parametric study)

- UDDer/lower side constraints

- Arbitrary number of tests and time windows selected for fitting

- Goodness-of-fit statistical measures

F_. 9

SENSITIVITY ANALYSIS

Model problem

- Unified viscoDlasticity with potential GVIPS (nonlinear hardening; static
recovery mechanism; isotropic/nonisotropic yielding)

- Total of seven viscoplastic parameters (design variables)

Flow equation

Evolution equation

Yield threshold

Simulated "actual" material (perfect model representation capability)

- Normalized sensitivity plots

- "Accuracy" and efficiency _ with traditional finite-differencing
schemes

- Creep, relaxation, constant-strain-rate tension as reDresentative tests

Rg. 10

= 2 (viscosity g; exponent n)

= 4 2 (hardening; modulus H, exponent I_)
+ 2 (recovery; modulus R, exponent m)

= 1
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SENSITIVITY ANALYSIS (SIMULATED TESTS)

DESIGN
PARAMETERS

TI

IMPLICIT

1.7899

(10)-1

F.D.

1.7864

(10)-1
KT

n -1.1361 -1.1384

(10)-1 (10)-1

p, 1.4583

(10)-6

9.2111

(10)-19
m

1.4570

(10)-6

i_ 4.2054
(10)-3

0.000

T25

IMPLICIT F.D.

4.5844 4.5816

2.1588 2.1525

(10)-1 (10)-1

-1.7294 -1.7291

(10)-6 (10)-6

-6.3965 -6.4033

(10)-6 (10)-6

4.2041 -9.4439 -9.4236

(10)-3 (10)-1 (10)-1

R -9.1043 0.000 -9293.57 -9293.71

(10)-9

H 1.4634 1.4628 3.6125 3.6085

(10)-7 (10)-7 (10)-5 (10)-5

v Time Evolution

T5o

ED.IMPLICIT

4.5844 4.5817

2.1588 2.1525

(10)-1 (10)-1

-1.7295

(10)-6

-1.5127

(10)-5

-9.4395

(10)-1

-2.1978

(10)+5

3.6124

(10)-5

-1.7291

(lO)-6
-1.5144

(10)-5

-9.4325

(10)-1

-2.1976

(10)+5

3.6084

(10)-5

Fig. 11
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SENSITIVITY ANALYSIS (SIMULATED TESTS)
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EFFICIENCY OF IMPLICIT SENSITIVITY SCHEME

TENSILE

IMPLICIT 1.0

F.D. 8.004

CREEP RELAXATION

RELATIVE 1.0 1.0

CPU 8.235 7.931

General Estimate:

Relative CPU = 8 x N i x N w x N t x

N i = Number of integration steps per each (equal) optimization

interval

N w = Number of (equal) sampling points (time windows) per test

N t = Number of total tests

11 = Trial-Differencing-Accuracy Factor _ = 2 _ 10 -_ ?

Fq_. 13

TYPICAL CONVERGENCE AND FITTING ACCURACY
(SIMULATED MATERIAL FOR TENSILE/CREEP/RELAXATION TEST)

t.2[- 700 .

1.0 600(E =69128.7)

0.8 i 500

t_ 0.6 _ 4oo

0.4 rs 300

._ o_
' (E = 4.405E-3)

.o.o - 10o

-0.2 . I . 1 . I . I I 0
0 5 I0 i5 20 25 30 35 40 0

Number Of Iterations

Convergence
Fig. 14
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Time (see)

Accuracy in Tensile Test
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TYPICAL CONVERGENCE AND FITTING ACCURACY
(SIMULATED MATERIAL FOR TENSILE/CREEP/RELAXATION TEST
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F_. is

APPLICATIONS

• Material: - TIMETAL 21S

- Temperature = 650°C

• Experimental tests available

(a) 3 tensile tests

(b) 3 creep test

(c) 1 relaxation test

(d) single 3-step creep test

• Results/Studies

- varied number of tests included in fitting

- varied sampling-time intervals within each test

- varied material-parameter bounds and optimization weights

- comprehensive case: all tests (a)-(d) included in fitting

F=g.16
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SUMMARY OF COMPREHENSIVE FIT CASE
(TIMETAL 21S; 8 TESTS; T=Tensile, C--Creep, R=Relaxation, SC=3-Step Creep)

T1 T2 T3 C1 C2 C3 R SC

Number of 93 67 57 96 103 107 72 285
Fitting Points

Weight Factors 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
(equal weight)

Weight Factors 0.1193 0.1657 0.1947 0.116 0.1077 0.1037 0.1542 0.0389
(variable weight)

a) Fitted Points and Weights

Estimated
(equal)

Estimated
(variable)

Numberof
Iterations

53

49

Number of
Function Calls

61

54

Number of
Gradient Calls

54

50

Normalized
CPU

1.0

0.882

b) Solution Efficiency
F_h17

SUMMARY OF COMPREHENSIVE FIT CASE
(TIMETAL 21S; 8 TESTS)

1.20 -

l.OO
.9

=_ 0.8o

_ 0.40

_ 0.20
0
Z

41.110 -

-02O
0

_-(E=4059.9?)Equal
• (E =5070.06)Variable

, I , I ,

10 _0

(E= 103.65)Variable

_ (E=88.4)Equal

I , I , I , I I I I

30 40 50 60 70 80 90

Number of Iterations

Fig. 18
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TENSILE BEHAVIOR CORRELATION

(COMPREHENSIVE FIT)

Given:

- a "far" initial guess

- with/without bounds on parameters

--) unique "optimal" response

_-o = 8-333x10-6

600

400

e,i
¢,1

200

300'

_"100

x Experiment

--_ Initial Set

-- Optimum Set

(RcleaseA-Cons traints)
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800

,-, 600

400
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200

0 o 0 o
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, | , [ I _ t . i . t

400 800 1200
Time (see)
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2 4 6 8 10 12
Time (see)

CREEP BEHAVIOR CORRELATION

(COMPREHENSIVE FIT)

Given: o.o4

- a "far" initial guess

- varying sample-time intervals

•--) unique "optimal" response

0.04

0.03

0.02

0.01

0.00 0

0 0 =

× Experiment

---- Initial Set

-- Optirmma Set

Large Sample Fit

109.6MPa

3000 6()00 9_)0

Time (see)
I=ig.

0.03

_0.02
_o

0.01

o 0 = 72.4MPa

0"000 3000 6000 9000

Time (see)

0.04

0.03

0.02
_J

0.01

0.00
0

o 0 = 128.4MPa

3000 6000 9000
Time (see)
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RELAXATION BEHAVIOR CORRELATION

(COMPREHENSIVE vs. SINGLE-RELAXATION TEST FIT
Given:

- a "far" initial guess

- v,_riable optimization weights

--) unique optimized response

Comprehensive fit gives better overall
predictions with comparable accuracy
to the "pure" single-response curve
correlation

250! 250

200

0
0

_. 150

_100

Oinitia I = 238MPa

ix I----_ Set

Equal Weight

\ I " v='_I¢ wei'_

, , I 0 - I

3 6

Time (see)
(a) Comprehensive Fit

2O0

5O

¢_ 150
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5O

' 0
9x104 0
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x o.x_.am_t
_ Initial Set

Compre_easive Fit

\ [ • Single Test Fit
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3 6 9xl04
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(b) Single-Test Fit

3-STEP CREEP CORRELATION
(COMPREHENSIVE FIT)
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0

+ atni=== ÷
m lniti_Set

÷

_w_

•_ v=a_w_ i ""

1 2 3
Time (see)

I

4x104

FI_ZZ
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SUMMARY/CONCLUSIONS

• Validation with exact (simulated) material

- Given an accurate constitutive model, exact correlation is achievable by
COMPARE

• Assessment with real materials (TIMETAL 21S)

- Automated material parameter estimation enables the model to achieve its
"best" correlation

- Serves as a tool for identifying critical experiments to maximize pertinent
=data content" (e.g., one test for tension, creep, cyclic and (initial) relaxation)

- Requires minimum "user expertise"

- Gives a measure for model suitability and directions for its further
.enhancement in realistic range of applications

- Estimates for effects of model versus experimental (noisy data) deficiencies

(COMPARE's knowledge of parameter _ensitivities)

F_g. 23

SUMMARY/CONCLUSIONS

- Including more data points in fitting enhances the optimizer convergence
speed

New model implementation

- Demands more than just a definition of elementary (differential) flow/evolution

equations - _ form Jacobian

Rg._l

FUTURE WORK

• Inclusion of new material models in COMPARE library

• Experience in applications with multiaxial test fitting

• "User-friendly" _nhancements

Fig. 25
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